arXiv:2205.01554v3 [cs.NI] 1 May 2023

Exploring Proxying

QUIC and HTTP/3

for Satellite Communication

Mike Kosek*, Hendrik Cech*, Vaibhav Bajpaif, Jorg Ott*
*Technical University of Munich, Germany

[kosek | cech |

ott]@in.tum.de

TCISPA Helmholtz Center for Information Security
bajpai@cispa.de

Abstract—Low-Earth Orbit satellites have gained momentum
to provide Internet connectivity, augmenting those in the long-
established geostationary orbits. At the same time, QUIC has
been developed as the new transport protocol for the web.
While QUIC traffic is fully encrypted, intermediaries such as
performance enhancing proxies (PEPs) — in the past essential for
Internet over satellite performance — can no longer tamper with
and optimize transport connections. In this paper, we present a
satellite emulation testbed and use it to compare QUIC and TCP
as well as HTTP/3 and HTTP/1.1 with and without minimal
PEP functionality. Evaluating goodput over time, we find that
the slow start threshold is reached up to 2s faster for QUIC
PEP in comparison to QUIC Non-PEP. Moreover, we find that
HTTP/3 and HTTP/3-PEP outperform HTTP/1.1 and HTTP/1.1-
PEP in multiple web performance scenarios, where HTTP/3-PEP
improves over HTTP/3 for Page Load Time by over 7s in edge
cases. Hence, our findings hint that these performance gains may
warrant exploring PEPs for QUIC.

I. INTRODUCTION

Internet access via satellite has experienced a revival with
the advent of Starlink by SpaceX [1], Kuiper by Amazon
[2], Oneweb [3], and Telesat [4], which leverage massive
satellite constellations in low earth orbits (LEO) at 300-
2000 km altitude. This is contrast to early services, such as
Hughes DirecTV and Viasat Connexion for aircraft, among
others, that mostly used geostationary (GEO) satellites at an
altitude of 35,785km to provide Internet connectivity in the
late 1990s and (early) 2000s, with Iridium [5] as one notable
exception that has also relied on LEO satellites.

Using GEO satellites, such early Internet access services
have experienced a one-way delay of around 250ms for the
satellite hop. This called for introducing intermediaries, often
dubbed performance enhancing proxies (PEPs) [6], in order
to improve (interactive) content access. PEPs may generally
provide two classes of functionality: I. Transport layer con-
nection splitting and other transport layer optimizations aim
at decoupling the congestion and error control loops of dif-
ferent path segments, usually isolating the “challenged” (i.e.,
typically satellite) link [6]. These functions can be performed
even if higher layer security protocols (e.g., TLS) are used
as TCP headers are in the clear and allow the manipulation
of connections. II. Application layer functions such as HTTP
prefetching and content caching aim at reducing the impact

ISBN 978-3-903176-48-5© 2022 IFIP

of high RTTs on application layer protocols. These functions
need access to the application data and thus won’t work unless
secure connections are terminated at an intermediary. While,
for the regular Internet, Content Delivery Networks (CDNs)
may help by replicating services and contents close to the
user, this is generally not applicable when the challenged link
or path segment includes the last hop.

Today, the advent of QUIC [7]-[9] as a secure transport
protocol that also encrypts control information prevents inter-
mediaries from accessing header fields, and thus challenges the
implementation and use of the transport layer PEP functional-
ity (I.). Yet, connection splitting remains possible if proxies do
not operate transparently but are explicitly included in QUIC
connection setup as, e.g., discussed in the MASQUE WG
of the IETF [10]. But would QUIC PEPs actually make a
difference — for both traditional GEO-based satellite services
and for the recent LEO-based ones?

This question arises for (at least) two reasons: (1) QUIC
integrates transport setup and TLS 1.3 security and thus
reduces the number of round-trips required for connection
establishment, possibly even eliminating them entirely with
O-RTT setup for recurring connections to the same server.
(2) QUIC supports stream multiplexing within a connection
without head-of-line blocking so that only a single connection
per server is needed, eliminating repeated setup costs.

In this paper, we seek to explore if these two performance
improvements built into QUIC by design are sufficient to
offset the need for PEPs in satellite networks. Since end-to-
end encryption using TLS/TCP or QUIC rules out application
layer PEP operations (II.), we focus on L, i.e., transport layer
optimizations. To this end, we make two main contributions:

(1) We present a satellite communication emulation testbed
(§ I which enables reproducible measurements over satellite
networks by using our specifically designed QUIC PEP as well
as QUIC performance measurement implementations.

(2) We carry out an extensive emulation study (§ III)
assuming propagation delays of LEO and GEO satellites and
explore various combinations of link characteristics. We report
on connection goodput over time and, as initial indicators on
web performance, Response Start, First Contentful Paint, and
Page Load Time.

We compare QUIC vs. TCP, and HTTP/3 (which uses
QUIC) vs. HTTP/1.1 (which uses TCP), with and with-

© IFIP, 2022. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The
definitive version was published in 2022 IFIP Networking Conference, https://doi.org/10.23919/IFIPNetworking55013.2022.9829773

https://doi.org/10.23919/IFIPNetworking55013.2022.9829773

satellite

Software
component

Logical unit
(namespace)

i/f Virtual interface

Client

client satellite-

3 proxy-satellite

terminal

Fig. 1.

satcom-
emulation

satellite-
gateway

proxy-gateway server

The SATCOM emulation testbed comprises eight logical units based on Linux network namespaces depicted as light shaded rectangles, where the

blue shaded ones make up the OpenSAND SATCOM components (ST, SAT, GW). Client and Server are the measurement endpoints and two PEPs (Proxy-ST,
Proxy-GW) may be included in the path or bypassed. To induce SATCOM loss, the forwarding properties of the indicated interface are modified by netem
emulation components. In addition, netem is also used to create Internet delay between the satellite ground station hosting the Proxy-GW and the target server.
Arrows from components to interfaces indicate network access through these interfaces, while double-sided arrows represent routing between networks. Bold

lines connect two interfaces and thin lines indicate the affiliation with a bridge.

out PEPs, representing the past and future web. Evaluating
goodput over time, we find that the slow start threshold is
reached up to 2s faster for QUIC PEP in comparison to QUIC
Non-PEP, where the improvements are more pronounced on
connections with higher RTTs. Moreover, we find that HTTP/3
and HTTP/3-PEP outperform HTTP/1.1 and HTTP/1.1-PEP in
multiple scenarios which we attribute to QUIC’s multiplexing
capabilities. In addition, HTTP/3-PEP improves over HTTP/3
for Page Load Time in GEO orbits: With a reduction of
~330ms for real world conditions, and over 7s in edge cases,
we observe a benefit of PEPs for QUIC connections.

In order to enable the reproduction of our findings, we make
the developed tools, the raw data of our measurements, as
well as the analysis scripts and supplementary files publicly
available'!. We note that our current QUIC PEP evaluation
assumes a simplistic setup in which the PEP terminates a
QUIC connection and then relays the user data, exposing
it to the proxy. While other designs are conceivable, this
choice does not affect the purpose of our measurements:
understanding if QUIC could benefit from PEPs. While we
discuss this and further limitations of our current work in § IV,
related work will be detailed in § V, and § VI concludes the

paper.
II. SATCOM EMULATION TESTBED

The Satellite Communication (SATCOM) emulation testbed
enables reproducible transport as well as application
layer measurements over SATCOM networks, leveraging
OpenSAND [11] for the emulation of the satellite components.
OpenSAND is an established open-source tool for the emu-
lation of SATCOM networks, featuring link-layer emulation

Thttps://github.com/kosekmi/2022-ifip-nw-quic-proxies

based on the DVB-RCS2 and DVB-S2 standards [12]. While
OpenSAND shows a high degree of accuracy [13] and is
widely used [13]-[16], its complex setup and parametrization
is considered a major obstacle [13]. We therefore abstract the
parametrization of the SATCOM emulation testbed, creating a
controlled emulation environment executed on a single Linux
system using different scenarios. A scenario represents the
combination of different testbed (e.g., delay, loss, attenuation)
as well as transport layer (e.g., congestion control, initial
window) parameters used by the emulation. Each scenario
can be run a specified number of times, where the testbed is
gracefully shut down and newly started on every emulation run
to rule out any influence of previous runs to a subsequent one.
Within each scenario, multiple transport and application layer
measurement types are performed: using QUIC, TCP, HTTP/3,
as well as HTTP/1.1, each with and without the aid of a
Performance Enhancing Proxy (PEP). By combining multiple
scenarios within one emulation configuration, the automated
visualization enables a holistic view and detailed analysis of
transport and application layer performance over all measured
scenarios.

In this section, § II-A details the SATCOM emulation
testbed design, followed by a comprehensive description of
the scenario parameters in § II-B. While § II-C introduces
the measurement types, § 1I-D presents the QUIC PEP imple-
mentation in order to proxy QUIC connections. Following the
introduction of the QUIC performance measurement tool in
§ II-E, we conclude with a validation of the emulation testbed
in § II-F.

A. Design

Fig. 1 depicts the SATCOM emulation testbed design.
The emulation comprises eight logical units based on Linux

network namespaces depicted als shaded rectangles. On the
left-hand side, the Client is deployed, running the client-side
measurement tools for the respective measurement type. The
client namespace is connected to the proxy-satellite
namespace, where, depending on the measurement type, the
Proxy-ST proxies the data, or an IP route will forward the data
to the satellite-terminal namespace. For the emulation of
the satellite components (blue shaded rectangles), we leverage
OpenSAND. Within the satellite-terminal namespace,
the interface st0 forwards the packets to the emulated satellite
terminal ST. ST encapsulates the packets into DVB-RCS2
RLE (Return Link Encaspulation) frames and forwards the
data to the satcom-emulation namespace which intercon-
nects the three OpenSAND components S7, SAT, and GW
(blue shaded rectangles) via the bridge-interface br-emu.
The SAT component performs the satellite emulation (e.g.,
packet delay, signal attenuation), where loss is also emulated
on the satellite connection (interface emuOl) using netem.
Following the satellite emulation, packets are sent to the
satellite-gateway namespace, where the satellite gateway
GW de-encapsulates the DVB-RCS2 RLE frames, and for-
wards the data to the proxy-gateway namespace. Depending
on the measurement type, the Proxy-GW proxies the packets,
or an IP route forwards the data. Using either option, the gw2
interface subsequently emulates the one-way delay between
the proxy-gateway and the Server using netem, i.e., the
delay between the satellite ground station hosting the Proxy-
GW and the target server. As a final step, the Server runs the
server-side measurement tools for the respective measurement
type and replies to the measurement requests initiated by the
Client. While the communication flow in the opposite direc-
tion, i.e., from Server to Client, is mainly identical, the Internet
delay is added on srv instead of gw2, the encapsulation/de-
encapsulation of Proxy-GW and Proxy-ST are interchanged,
and the packets are encapsulated using DVB-S2 GSE (Generic
Stream Encapsulation) instead of DVB-RCS2 RLE.

The depicted SATCOM testbed design represents a typical
SATCOM use-case: A client connects via a local network
to a satellite-terminal, which communicates via a satellite to
a satellite-gateway, from where a connection to a server is
established. In this use-case, the satellite-terminal represents
the access router, where the satellite-gateway represents the
ground station — both operated by the SATCOM network
provider. Moreover, both Proxy-ST and Proxy-GW are also
operated by the SATCOM network provider in order to opti-
mize the SATCOM connections using PEPs.

B. Scenarios

A scenario represents the combination of different testbed
and transport layer parameters used by the emulation, which
are presented in Tab. I and detailed in the following.

Testbed parameters. The Internet delay states the one-
way delay between the satellite ground station and the target
server. In contrast, the SATCOM delay represents the one-
way delay of the SATCOM connection, where a static value,
or a list of values stating the change over time, can be

TABLE I
EMULATION PARAMETERS FOR scenario CONFIGURATIONS

Category Parameter Values

Testbed Internet delay ms, static
SATCOM delay ms, static or dynamic
SATCOM loss percentage
SATCOM attenuation db

Transport ~ Congestion Control CUBIC, NewReno

Initial Window
ACK Frequency (QUIC)

maximum packets
ack-freq parameters

configured. Moreover, loss configures the loss of the SATCOM
connection, and attenuation the signal damping.

Transport parameters. The transport parameters are spe-
cific to the measurement components Client and Server, as
well as the PEPs Proxy-ST and Proxy-GW. Hence, every
parameter can be individually specified for each transport
component, which enables the optimization of the SATCOM
connection using Proxy-ST and Proxy-GW independently of
the Client and Server parametrization. The Congestion Con-
trol parameter configures the Congestion Control Algorithm
(CCA), where Cubic and NewReno are the available options.
While Cubic is the default CCA in most of today’s operating
systems, NewReno is preferred on high RTT connections as
experienced in SATCOM networks due to its less aggressive
congestion window growth [17]. However, more optimized
CCA implementations (e.g., Hybla, BBR) exist for satellite
networks [18]. Since the QUIC implementation we use is cur-
rently limited to Cubic and NewReno (see § II-D and § II-E),
we restrict the available options in order to achieve comparable
results between QUIC and TCP (see § IV). Moreover, the
Initial Window (IW) parameter configures the initial window,
while the ACK Frequency parameter is specific to QUIC and
enables support for the QUIC Acknowledgement Frequency
extension [19].

C. Measurement Types

Within each scenario, multiple measurements are performed
using QUIC, TCP, HTTP/3 (which uses QUIC), and HTTP/1.1
(which uses TCP), each with and without the aid of a PEP. We
acknowledge that the number of websites supporting HTTP/2
is rising [20], and we will additionally evaluate HTTP/2 in a
future study (see § 1IV).

QUIC. For the QUIC measurement type, we developed
the QUIC performance measurement tool (see § II-E) which
measures the connection establishment time, the time to first
byte, the congestion window, and the goodput with and without
the usage of the QUIC PEP (see § 1I-D).

TCP. The TCP measurement type uses iperf3 to measure the
congestion window on the server-side, and the goodput on the
client-side, optionally proxied by the open-source TCP PEP
PEPsal [21]. Moreover, the connection establishment time and
the time to first byte are measured using curl on the client
connecting to a nginx web server on the server.

HTTP/3. The HTTP/3 measurement type leverages the
H20 web server. While H20 serves an arbitrary website,

it is accessed using HTTP/3 by a Chromium web browser
controlled by Selenium on the client-side, with or without
using the QUIC PEP (see § II-D). Using the Performance
Navigation Timing API [22], various web performance metrics
like Response Start, First Contentful Paint, and Page Load
Time, are measured.

HTTP/1.1. For HTTP/I.1, we measure the same web perfor-
mance metrics using the same tools as with HTTP/3, optionally
proxied by the PEPsal TCP PEP.

D. QUIC PEP

With TCP headers unencrypted, TCP PEPs can be de-
ployed in SATCOM networks for transport layer connection
optimizations based on connection splitting (see § I). With
its mandatory header encryption, connection splitting is not
applicable to QUIC in a similar fashion and, thus, QUIC
connections are inherently end-to-end. To evaluate if QUIC
over SATCOM networks could benefit from transport layer
optimizations as performed by TCP PEPs, we develop a
proxy to enable connection splitting of QUIC connections:
The proxy receives incoming connections, establishes a new
connection to a predefined destination, and forwards data
between both connections while directly mapping the stream
IDs. This simplistic design breaks end-to-end encryption and
gives the proxy access to the decrypted user data. We therefore
explicitly note that the implementation of QUIC PEP is a
proof-of-concept to evaluate if QUIC over SATCOM networks
could benefit from transport layer optimizations; see § IV
for a detailed discussion. This design facilitates concatenating
multiple proxies and decouples the congestion control loops
of different path segments; hence, transport layer connections
can be optimized for their respective path segment properties.

As a basis for QUIC PEP, the quicly [23] implementation is
used. In the default operation mode, which is used throughout
the paper until otherwise noted, the QUIC PEP performs
the handshakes of incoming connections in parallel with the
connection establishment with the next hop, which can be
an upstream proxy, or a target server. Using this design, the
connection establishment is parallelized, and the client is able
to send data before the connection to the target server is estab-
lished; hence, the time until the server, and subsequently the
client, receive the data, is improved. To enable the proxying of
HTTP/3 connections, the h3-capable operation mode disables
this parallelization, and requires a handshake with the next
hop to be completed before completing the handshake with
the previous hop. This requirement traces back to the server-
initiated unidirectional HTTP/3 control as well as the header
compression encode/decode streams, which must be received
by the client before the HTTP/3 request is sent in order to
avoid connection failure caused by state mismatch between
server and client.

For transport layer optimization, QUIC PEP offers the
parametrization of the CCA, the IW, and the QUIC version,
and also supports the QUIC Acknowledgement Frequency
extension [19].

E. QUIC Performance Measurement Tool

In order to evaluate QUIC performance, we develop a QUIC
performance measurement tool consisting of a client and a
server module. Using a client-initiated connection, the connec-
tion establishment time as well as the time to first byte between
client and server is measured. Subsequently, the server sends
arbitrary data back to the client, where the corresponding
congestion window is evaluated on the server-side, and the
resulting goodput on the client-side. The measurement tool
is also based on quicly and offers parametrization options
similar to QUIC PEP: the CCA, the IW, and the QUIC version.
Moreover, it offers support for the QUIC Acknowledgement
Frequency extension [19], and incorporates the glog [24]
logging schema to facilitate measurement analysis.

F. Validation

We evaluate the SATCOM emulation testbed in order to
validate its functionality, accuracy, and reproducibility. We
perform a functional validation by running the SATCOM
emulation testbed with different scenario configurations for
every measurement type, where each scenario is run 100
times. Before each scenario is run, we execute ICMP control
measurements, and capture the packets on both the client and
server side using fcpdump during the emulation. Evaluating
the ICMP measurements as well as the packet captures, we
find that the loss and delay characteristics are accurately
emulated. However, we observe an increased SATCOM delay
for connection establishment time and time to first byte of
~10ms for TCP-based connections and ~25ms for QUIC-
based connections. While we are not able to attribute this
observation to a single cause, an analysis identified that
the delay is added by the OpenSAND SATCOM emulation.
Following the successful completion of the emulation runs,
we evaluate the accuracy via the automated visualization of
all measurement types, augmented by a manual analysis of the
packet captures, the client, server, and proxy logs, and the CPU
and RAM utilization metadata. We find, that the emulation
is not limited by neither CPU nor RAM utilization, and that
the goodput converges to the maximum link-layer goodput
as configured by the SATCOM components. Moreover, we
validate the reproducibility of the SATCOM emulation testbed
by comparing the results of 3 different Linux systems, finding
identical results for all scenarios and measurement types.

III. EVALUATION

With a validated emulation testbed in place, we now proceed
to evaluate if QUIC benefits from transport layer optimizations
through PEPs, analyzing goodput as well as web performance
characteristics over multiple SATCOM network configura-
tions. The emulation is run on an Ubuntu 18.04 system with
Kernel 5.4.0, featuring 2 Intel Xeon E5-2643 6-Core CPUs and
128GB of RAM. The SATCOM components are configured
with a clear-sky Signal-to-Noise Ratio of 20dB, a constant
QPSK 1/4 modulation, a roll-off factor of 0.25, a return-
band (client to server direction) bandwidth of 20MHz, and a
forward-band (server to client direction) bandwidth of 50MHz,

resulting in a maximum forward-band link-layer goodput of
20Mbps. Using the validation (see § II-F), we ensure that the
emulation is not influenced by neither the hardware nor the
configuration.

Using the scenario model (see § II-B), we differentiate
between the two satellite orbits GEO and LEO, where we
set the SATCOM one-way delay to 250ms for GEO as derived
from the speed of light in a vacuum. In order to determine
a typical one-way delay for LEO orbits, we perform ~600k
RTT measurements from a vantage point in Central Europe
over a period of one week using Starlink [1], where we find a
median first hop RTT of ~32ms (mean ~33ms). While we
acknowledge that the first hop RTT in LEO constellations
changes due to the movement of the satellites, we observe
relatively constant RTTs for at least 30 consecutive seconds,
which is in line with the observations of Kassing et al. [25]
and Pavur et al. [14]. As our measurements do not exceed a
duration of 20s, we set the SATCOM LEO one-way delay to
a static value of 16ms (1/2 RTT). In addition to the SATCOM
delay, we set the Internet one-way delay to 40ms for both GEO
and LEO orbits in order to emulate the terrestrial distance
between the satellite ground station and the target server.
Hence, the delay configuration results in a GEO RTT of 580ms
and a LEO RTT of 112ms. Lastly, the attenuation is configured
with 0dB, i.e., no signal damping, and the packet loss rate is
chosen from 0, 0.01, 0.1, and 1%. While the transport layer
loss is considered to range from nearly 0% (where almost all
errors are corrected by the link-layer) up to 0.01% in real
world satellite conditions [14], we include 0.1 and 1% loss
conditions in order to evaluate edge cases.

We further differentiate between the Non-PEP and PEP
transport parameter configurations. For Non-PEP, we config-
ure both client and server with default values used in both
QUIC and TCP stacks, where the CCA is set to Cubic and the
IW to 10. For PEP, we use the identical settings as for Non-Pep
for client and server, but optimize the SATCOM connection
using PEPs by setting the CCA to NewReno and the /W to 100
for both QUIC and TCP. Finally, we use QUIC version 1 for
all QUIC configurations.

With the above scenarios, we emulate a typical SATCOM
use-case with varying orbits as well as loss characteristics,
enabling a direct comparison between PEP and Non-PEP
connections using QUIC, TCP, HTTP/3, and HTTP/1.1. While
the emulation testbed also offers more advanced scenario
configurations (see § II), we limit our evaluation to the con-
figurations presented above to get a deeper understanding of
the CCA and IW optimization potential, which are traditionally
optimized by TCP-PEPs [6].

A. Goodput

We evaluate the goodput over time presented in Fig. 2 by
analyzing the ratio of bytes received between PEP and Non-
PEP (main plots) and absolute goodput (embedded plots) for
GEO (top row) as well as LEO (bottom row) satellite orbits,
each with 0, 0.01, 0.1, and 1% loss (columns from left to
right). With a duration of 15s, a typical file-download use-

case is evaluated. The measurements are repeated 100 times
and we present the averages over all measurement runs. The
main plots show the relative difference of bytes received over
time between PEP and Non-PEP connections. A factor of 1
(dashed line) represents no improvement, a factor of >1 shows
a benefit by the usage of a PEP, and a factor of <1 represents
a degradation of PEP in comparison to Non-PEP connections.
Moreover, the embedded plots show the absolute goodput over
time for QUIC, QUIC-PEP, TCP, and TCP-PEP connections.

Evaluating the GEO measurements (Fig. 2 top row, a to
d), we observe a benefit of PEPs over all loss configurations,
where the factor of bytes received increases up to 10x
for PEP QUIC connections (magenta line). The benefit is
more pronounced in the first 5 seconds; we attribute this
improvement to the /W optimization of the PEPs. On high RTT
connections as experienced in SATCOM networks, the slow
start can become ACK-locked: While the bytes in flight are
limited by the congestion window, the sender has to pause the
transmission until an ACK is received. When we increase the
IW by 10x, more data can initially be sent before the receipt
of an ACK increases the congestion window, resulting in a
faster slow start until the slow start threshold is reached. This
benefit can also be observed in the embedded plots of the top
row showing the absolute goodput over time: The slow start
is considerably faster using PEPs (magenta and cyan lines),
improving over Non-PEPs (green and red lines) for 0 and
0.01% loss configurations by up to 2s (Fig. 2 a and b). While
the edge case loss configurations of 0.1 and 1% (c and d) also
show benefits from the increased /W of the PEP connections
(magenta and cyan lines), we observe a degradation in goodput
after reaching the slow start threshold for both PEP and Non-
PEP connections. The overall goodput is drastically reduced;
however, the PEP connections reach the slow start threshold
faster. In addition, we observe a benefit for QUIC connections
(green and magenta lines) in comparison to TCP (red and
cyan lines), where both QUIC connections result in higher
goodput following slow start. Evaluating 1% loss (Fig. 2 d)
for TCP connections, we observe an increase for TCP-PEP of
up to 85x within the first second of the measurement (cyan
line). While this factor exceeds our increase in /W of 10x, we
attribute this outlier to the iperf3 measurement tool: While we
sample the bytes received in 0.1s intervals, iperf3 regularly
omits the first 1-8 intervals in the 1% loss configuration,
resulting in the observed inaccuracies within the first second.

Evaluating the LEO measurements (Fig. 2 bottom row,
e to h), we again observe a benefit of PEPs over all loss
configurations, where the factor of bytes received increases up
to 3x for PEP QUIC connections (magenta line). This benefit
is more pronounced within the first 2 seconds; however, while
the increase in /W results in a faster slow start, the slow start
threshold is reached at the same time for PEP (magenta and
cyan) and Non-PEP (green and red) connections (bottom row
embedded plots). Moreover, the benefit is less pronounced in
comparison to GEO. Evaluating the 0.1 and 1% loss edge cases
(g and h), we observe similar trends in comparison to GEO
while the overall goodput is drastically reduced. Furthermore,

a) GEO Loss 0% b) GEO Loss 0.01%

c) GEO Loss 0.1% d) GEO Loss 1%

12

10 A 10% 4
8- /

10?

104 4

—

10% 10% A

Ratio of bytes received PEP to Non-PEP

0 T T
. e) LEO Loss 0% f) LEO Loss 0.01% g) LEO Loss 0.1% h) LEO Loss 1%
10 10* - f 10% - f 10 - N 10* -
8 M
6 4
102 102 102 102 T T
44 i 4
A\ e i\ ho—o
0 : -
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
time [s]
— QUIC —— QUIC-PEP —— TCP —— TCP-PEP

Fig. 2. Ratio of bytes received PEP to Non-PEP (main plots) and absolute goodput (embedded plots) over 15s for GEO (top row) as well as LEO (bottom
row) satellite orbits for real world (0, 0.01%) and edge case (0.1, 1%) loss conditions (columns from left to right). A factor of 1 represents no improvement,
a factor of >1 shows a benefit by the usage of a PEP, and a factor of <1 represents a degradation of PEP in comparison to Non-PEP connections.

we see a benefit of PEP connections almost over the complete
measurement for 0.1% loss (Fig. 2 g), where QUIC-PEP shows
a fast degradation on 1% loss following slow start (Fig. 2 h).
Takeaway: While we observe benefits for PEP connections
over all orbits and loss configurations, the improvements are,
expectedly, more pronounced on connections with higher RTTs
and less loss, where the slow start threshold is reached up
to 2s faster in comparison to Non-PEP connections. The
benefits are primarily limited to the slow start phase in real
world conditions, which results from the IW optimization of
the PEPs. However, PEP connections can also lead to a
degradation in goodput on SATCOM connections with shorter
RTTs.

B. Web Performance

We evaluate the web performance by analyzing the median
values of Response Start (RS), First Contentful Paint (FCP),
and Page Load Time (PLT) over 100 measurement runs
for every orbit, loss, and protocol combination presented in
milliseconds in Tab. II. To enable the proxying of HTTP/3
connections, the h3-capable operation mode of QUIC PEP
is used (see § II-D); hence, a handshake with the next
hop has to be completed before completing the handshake
with the previous hop, resulting in a sequential connection
establishment. Moreover, we use HTTP/1.1 without encryption
in contrast to the TLS 1.3 encrypted HTTP/3. While the
overhead of the TLS encryption adds 1 (in case of TLS 1.3),
respective 2 (in case of TLS 1.2) RTTs to the TCP connection
establishment of HTTP/1.1, the overhead is systematic. Hence,
we leverage unencrypted HTTP/1.1 as a performance oriented
baseline for our comparison to HTTP/3, where our results can

be extrapolated for TLS 1.3 / TLS 1.2 encrypted HTTP/1.1
by adding 1, respective 2, RTTs.

For our analysis, we use the ETSI Kepler Web Reference
Page [26] that aims to represent a “typical” website. While
we acknowledge that an objective characterization of a typical
website is debatable considering the heterogeneity of the web,
choosing this “representative” website can still serve as a first
indication if QUIC is able to benefit from proxies. A more
diverse set of websites will be evaluated in future work (see
§ IV). The default settings of the Chromium client and of
the H20 server are used to transport the website’s 75 objects
(~880kb) either over a single QUIC connection with 6 streams
in case of HTTP/3 (h3), or over 6 distinct TCP connections in
case of HTTP/1.1 (h1). QUIC version 1 and HTTP/3 version
draft-29 are used.

First, we take a look at the Response Start (RS) web perfor-
mance metric, which represents the time that passes between
the sending of the first packet of the transport handshake and
the reception of the first byte of the HTTP response by the
client [27]. Hence, the RS is expected to resemble 2 RTTs plus
the static one-way overhead added by OpenSAND of ~10ms
for TCP and ~25ms for QUIC (see § II-F). Analyzing the
GEO RS presented in Tab. II, we observe ~1.2s for the TCP-
based hl and h1-PEP protocols, while the QUIC-based h3 is
moderately (~1.3s) and h3-PEP considerably (~2.7s) slower
in comparison. The duration of RS is largely independent of
the packet loss rate. The protocols hl, h1-PEP and h3 show
the expected RS that roughly equals 2 GEO RTTs of 580ms
plus the static overhead added by OpenSAND. The increased
RS of h3-PEP (~2.7s) traces back to the h3-capable operation
mode of QUIC PEP: Because the connections are established

TABLE II
MEDIAN Response Start (RS), First Contentful Paint (FCP), AND Page Load Time (PLT) IN MILLISECONDS OF PEP AND NON-PEP
HTTP/3 (H3) AS WELL AS HTTP/1.1 (H1) CONNECTION FOR GEO (TOP) AS WELL AS LEO (BOTTOM) SATELLITE ORBITS
FOR REAL WORLD (0, 0.01%) AND EDGE CASE (0.1, 1%) LOSS CONDITIONS (COLUMNS FROM LEFT TO RIGHT).

Response Start (RS) First Contentful Paint (FCP) Page Load Time (PLT)
Orbit Protocol / Loss 0% 0.01% \ 0.1% 1% 0% 0.01% \ 0.1% 1% 0% 0.01% \ 0.1% 1%
GEO h3 1314 1310 1312 1321 2759 2760 2773 2861 7669 7671 7739 16865
h3-PEP 2717 2715 2717 2727 3581 3575 3581 4196 7344 7336 7522 9409
hl 1222 1220 1214 1221 3841 3844 3832 4172 10806 10835 11176 15802
h1-PEP 1215 1215 1214 1215 3852 3842 3836 4404 11144 11124 11175 13994
LEO h3 434 436 435 447 1408 1410 1415 1489 2612 2617 2649 7010
h3-PEP 1418 1414 1419 1416 1880 1868 1882 1914 3172 3173 3264 3872
hl 291 288 294 303 1138 1135 1145 1329 3218 3227 3302 4573
hl-pep 289 286 287 301 1095 1085 1084 1356 3308 3321 3367 4298

sequentially, and multiple message exchanges are required for
each connection setup, the h3-PEP RS is considerably higher.
Evaluating h3 and h3-PEP, we find additional overheads for
QUIC by the processing on the server and the proxies.
Analyzing the quicly library used by QUIC PEP as well as
the H20 web server (see § II), we find that the additional
overheads can be attributed to the quicly_accept () function
which accepts new connections, resulting in an increase of
2-6ms per connection establishment. Looking at the RS for
the LEO network over all loss configurations, we observe
the same trends as in GEO: While hl and hl1-PEP are
on par with ~290ms, h3 is moderately (~435ms), and h3-
PEP considerably (~1.4s) slower in comparison. Our results
therefore show that the RS of the TCP-based protocols hl and
h1-PEP are faster in comparison to the QUIC-based protocols
h3 and h3-PEP.

As a second web performance metric we evaluate First
Contentful Paint (FCP), which measures the time between
the sending of the first packet of the transport handshake and
the rendering of the first element by the browser; hence, it
represents the user-perceived load speed of a website [28].
Evaluating the GEO FCP presented in Tab. II, we observe
identical values per protocol over the 0O and 0.01% loss
configurations with ~2.8s for h3, ~3.6s for h3-PEP, as well
as ~3.8s for both hl and h1-PEP. While the QUIC-based
protocols h3 and h3-PEP show a slower RS, both improve over
their TCP counterparts for FCP. We attribute this improvement
to QUIC’s multiplexing capabilities: While 6 distinct TCP
connections are established by Chromium for hl and hl-
PEP to avoid head-of-line blocking, 6 streams are sent over
a single QUIC connection for h3 and h3-PEP. Hence, the
overhead of connection establishment is considerably reduced,
leading to faster FCP for h3 and h3-PEP in comparison
to hl and h1-PEP. Moreover, we also observe a relative
improvement comparing RS and FCP for h3 and h3-PEP:
While the overhead of the sequential connection establishment
of h3-PEP results in a RS slowdown of ~1.4s, this difference is
reduced to ~820ms for FCP. Looking at GEO 0.1% loss, we
observe identical values in comparison to 0 and 0.01%, while
1% loss shows an increase of up to ~600ms for h3-PEP as
well as h1-PEP. We observe similar trends in the FCP of GEO

and LEO orbits for 0 and 0.01% loss. However, due to the
reduced RTT in the LEO orbit, h3-PEP can not yet overcome
the initial overhead of the sequential connection establishment
in comparison to hl and h1-PEP. With a FCP of ~1.9s, h3-
PEP falls short of h1 and h1-PEP (~1.1s). Moreover, h3-PEP
also falls short of h3 by ~470ms, but still improves over their
RS difference of ~1s. Considering LEO 0.1% loss, we observe
slightly increased values in comparison to 0 and 0.01%, where
1% loss shows an increase of up to ~260ms for h1-PEP.

Our third web performance metric is the Page Load Time
(PLT) (see Tab. II), which represents the time between the
sending of the first packet of the transport handshake until all
content of the website is received by the browser [29]. Looking
at GEO’s 0 and 0.01% loss configurations, we observe the
fastest PLT for h3-PEP with ~7.3s, followed by h3 (~7.7s),
hl (~10.8s), and h1-PEP (~11.1s). We again attribute the
performance benefit of the QUIC-based h3 and h3-PEP con-
nections to QUIC’s stream multiplexing feature. Moreover, we
observe the break-even of the initial overhead of the sequential
connection establishment for h3-PEP, outperforming h3 by
~330ms, and h1 as well as h1-PEP by more than 3s; hence, we
see a benefit of PEPs for QUIC connections in GEO orbits. At
higher loss rates, the h3-PEP performance advantage increases:
With 1% loss, h3-PEP finishes loading more than 7s earlier
than h3, and ~4.5s earlier than h1-PEP. Comparing GEO hl
and h1-PEP, we observe that hl is slightly faster for 0 and
0.01% loss configurations, while they are on par for 0.1%;
however, h1-PEP shows an improvement of ~2s over hl for
1% loss. Evaluating PLT for LEO orbits for 0 and 0.01%
loss, we observe similar trends in comparison to GEO. While
hl (~3220ms) and h1-PEP (~3315ms) show the slowest
PLT, h3-PEP is faster with ~3170ms, only outperformed by
h3 with ~2615ms. Considering the reduced RTT in LEO
orbits, h3-PEP is not able to overcome the initial overhead
of the sequential connection establishment in comparison to
h3, but improves on hl and h1-PEP by ~50ms, respective
~145ms. Looking at 0.1% loss, this improvement becomes
more distinct, where on 1% loss h3-PEP outperforms h1l and
h1-PEP by more than 400ms, and even improves over h3 by
more than 3s.

Takeaway: Due to QUIC’s multiplexing capabilities, we

observe an improvement of the QUIC-based protocols h3 and
h3-PEP over both hl and hI-PEP, where h3 and h3-PEP
achieve faster FCP and PLT in GEO orbits, as well as faster
PLT in LEO orbits. Moreover, while the initial overhead of the
sequential connection establishment of h3-PEP leads to slower
RS and FCP in comparison to h3, h3-PEP improves over h3
for PLT in GEO orbits: With a reduction of ~330ms for real
world conditions, and over 7s in edge cases, we observe a
benefit of PEPs for QUIC connections.

IV. LIMITATIONS AND FUTURE WORK

While our QUIC PEP realizes transport layer optimiza-
tions by means of connection splitting, the implementation
is considered a proof-of-concept as the proxy is able to
access the decrypted data, yet sufficient for the purpose of
exploring possible benefits of QUIC PEPs. Hence, we are
currently exploring schemes where the QUIC payload remains
end-to-end encrypted and only selected control information
are exposed to the proxies. Traffic tunneling mechanisms as
discussed in the IETF MASQUE WG [30] preserve encryption
and allow for an independent congestion control loop between
these PEPs, but still run nested congestion control end-to-end,
not providing connection splitting. Yet, the basic signaling
mechanisms provide a well-defined means for interacting with
proxies and thus could be leveraged for extensions towards
QUIC PEPs, with further mechanisms for preserving end-to-
end encryption to be explored.

Moreover, the PEPed QUIC connections are currently es-
tablished per client request, offering additional optimization
potential: By leveraging 0-RTT between the proxies, the time
required for the connection establishment can be further re-
duced. Considering the CCAs, both QUIC PEP and the QUIC
performance measurement tool currently only offer Cubic and
NewReno. While more optimized implementations exist for
satellite networks (e.g., Hybla, BBR), we will integrate and
evaluate additional CCAs in a future study. We also plan to
incorporate the Acknowledgement Frequency extension [19]
in order to reduce the number of acknowledgements sent, as
well as the QUIC BDP Frame extension [31] to accelerate
the goodput ramp-up on repeated connections; both show
promising results for SATCOM networks.

While our findings revealed that QUIC connections are able
to benefit from proxies through transport layer optimization
for both goodput and web performance, we acknowledge that
our findings on web performance are (naturally) influenced by
the website selection. Therefore, we seek to evaluate a more
diverse set of websites in a future study in order to generalize
our findings, where we will also incorporate HTTP/2.

V. RELATED WORK

Several papers [32]-[37] investigate the usage of QUIC in
satellite networks. They find that QUIC realizes lower Page
Load Times on the web compared to TCP, mainly due to its
faster connection setup [32], [33]. Also, the utility of PEPs for
improving the performance of TCP over long-delay satellite
links has long been known [38]. The studies that compare

the performance of TCP using PEPs (TCP-PEP) with QUIC,
find that TCP-PEP generally outperforms QUIC for larger
transfers [34]-[37].

Some authors argue that specific tuning, such as an increase
of the initial window, can improve QUIC’s performance [34],
[36], [37]. Custura et al. [37] investigate how decreasing the
acknowledgement frequency can reduce the control overhead
and in some cases improve performance. Kuhn et al. [31]
introduce the QUIC BDP Frame extension that accelerates the
throughput ramp-up on repeated connections over long-delay
satellite links.

We take a different approach to examine the impact of
transport-layer optimizations on the performance of QUIC
over GEO and LEO links by developing a proof-of-concept
QUIC-PEP. Previous work on intermediaries with QUIC for
SATCOM is sparse and the closest related work is from Pavur
et al. [14] on QPEP, who multiplex TCP connections over a
single QUIC connection between ground terminals and thereby
significantly reduce Page Load Times. They, however, study
a long-standing QUIC connection and therefore exclude the
connection setup. While netem is commonly applied at a
single point to model a satellite link [32], [33], [39], we
use OpenSAND [11] in conjunction with netem and induce
delay at different points along the network path to model our
emulation closer to reality.

A large fraction of previous studies [40]-[43] examines the
performance of Google’s QUIC flavor (gQUIC) that differs in
fundamental points, such as the cryptographic handshake, from
the IETF specification of QUIC [44]. Recent web performance
evaluations show that HTTP/3 using IETF QUIC does not
necessarily perform better than HTTP/2, which builds upon
TCP [45], [46]. Saif et al. [45] find that TCP performs better
except if loss is present. In this case, QUIC’s design shows
its strength by reducing the impact of head-of-line blocking.
Similarly, Yu et al. [46] present mixed findings and highlight
the impact of configuration choices on QUIC’s performance.
We add a SATCOM perspective to the research space of
HTTP/3 performance by analyzing common web performance
metrics such as the Page Load Time.

VI. CONCLUSION

In this paper, we presented a satellite emulation testbed
which enables reproducible QUIC, TCP, HTTP/3, and
HTTP/1.1 measurements by using our specifically designed
QUIC PEP as well as QUIC performance measurement im-
plementations. Using the emulation testbed, we carried out
an extensive emulation study for LEO and GEO satellites,
exploring various combinations of link characteristics. We
found, that the slow start threshold is reached up to 2s faster
for QUIC PEP in comparison to QUIC Non-PEP, where
the improvements are more pronounced on connections with
higher RTTs. Moreover, we showed that HTTP/3 and HTTP/3-
PEP outperform HTTP/1.1 and HTTP/1.1-PEP in multiple
web performance scenarios which we attribute to QUIC’s
multiplexing capabilities. In addition, HTTP/3-PEP also im-
proves over HTTP/3 for Page Load Time in GEO orbits by

over 7s in edge cases. Hence, our findings show that PEPs
can be beneficial for QUIC connections and warrant further
exploration: While the presented QUIC PEP is considered a
proof-of-concept, the basic signaling mechanisms discussed
in the IETF MASQUE WG provide well-defined means for
interacting with proxies and thus could be leveraged for
extensions towards end-to-end encrypted QUIC PEPs.

ACKNOWLEDGEMENTS

We thank Robert Briining, Felix Beil, and Curt Polack for
their valuable efforts, as well as the anonymous reviewers for
their insightful feedback.

[1]
[2]

[3]
[4]
[5]

[7]

[8]
[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

“Starlink,” [Accessed 2022-Apr-30].
www.starlink.com

A. Boyle, “Amazon to offer broadband access from orbit with
3,236-satellite ‘project kuiper’ constellation,” [Accessed 2022-Apr-30].
[Online]. Available: https://www.geekwire.com/2019/amazon-project-
kuiper-broadband- satellite/

OneWeb, “Oneweb: Connect with ease,” [Accessed 2022-Apr-30].
[Online]. Available: https://oneweb.net/connect_with_ease

Telesat, “Telesat: Global satellite operators,” [Accessed 2022-Apr-30].
[Online]. Available: https://www.telesat.com/

Iridium, “Staying connected,” [Accessed 2022-Apr-30].
Available: https://www.iridium.com

J. Griner et al., “Performance Enhancing Proxies Intended to Mitigate
Link-Related Degradations,” RFC 3135, Jun. 2001. [Online]. Available:
https://www.rfc-editor.org/info/rfc3135

J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC 9001,
May 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9001
J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” RFC 9002, May 2021. [Online]. Available: https://www.rfc-
editor.org/info/rfc9002

“Multiplexed ~ Application ~ Substrate
(masque),” [Accessed 2022-Apr-30].
//datatracker.ietf.org/wg/masque/about/
“OpenSAND SATCOM emulation,” [Accessed 2022-Apr-30]. [Online].
Available: https://opensand.org/

“DVB-S2 specifications,” [Accessed 2022-Apr-30]. [Online]. Available:
https://www.etsi.org/technologies/dvb-s-s2

A. Auger et al, “Making Trustable Satellite Experiments: An
Application to a VoIP Scenario,” in VTC, 2019-Spring. [Online].
Available: https://doi.org/10.1109/VTCSpring.2019.8746404

J. Pavur et al., “QPEP: An Actionable Approach to Secure and
Performant Broadband From Geostationary Orbit,” in NDSS, 2021.
[Online]. Available: https://doi.org/10.14722/ndss.2021.24074

C. Baudoin and F. Arnal, “Overview of Platine emulation testbed and its
utilization to support DVB-RCS/S2 evolutions,” ASMS, 2010. [Online].
Available: https://doi.org/10.1109/ASMS-SPSC.2010.5586897

F. Amal et al., “Handover Management for Hybrid Satellite/Terrestrial
Networks,” LNICST, 2013. [Online]. Available: https://doi.org/10.1007/
978-3-642-36787-8_12

I. Rhee et al., “CUBIC for Fast Long-Distance Networks,” RFC 8312,
Feb. 2018. [Online]. Available: https://doi.org/10.17487/RFC8312

S. o. Claypool, “Comparison of TCP Congestion Control Performance
over a Satellite Network,” PAM, 2021. [Online]. Available: https:
//doi.org/10.1007/978-3-030-72582-2_29

J. Iyengar and I. Swett, “QUIC Acknowledgement Frequency,” IETF,
Internet-Draft draft-ietf-quic-ack-frequency-01, Oct. 2021, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
quic-ack-frequency/

“HTTP usage statistics,” [Accessed 2022-Apr-30]. [Online]. Available:
https://w3techs.com/technologies/history_overview/site_element/all/y
C. Caini et al., “PEPsal: a Performance Enhancing Proxy designed
for TCP satellite connections,” VTC, 2006. [Online]. Available:
https://doi.org/10.1109/VETECS.2006.1683339

[Online]. Available: https://

[Online].

over
[Online].

QUIC Encryption
Available: https:

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

“PerformanceNavigationTiming ~ APL,” [Accessed 2022-Apr-30].
[Online]. Available: https://w3c.github.io/navigation-timing/#process
“Quicly QUIC implementation,” [Accessed 2022-Apr-30]. [Online].
Available: https://github.com/h20/quicly

R. Marx et al., “Debugging QUIC and HTTP/3 with Qlog and
Qvis,” ANRW, 2020. [Online]. Available: https://doi.org/10.1145/
3404868.3406663

S. Kassing and other,
Hypatia,” IMC, 2020.
3419394.3423635
“ETSI Kepler Web Reference Page,” [Accessed 2022-Apr-30]. [Online].
Available: https://www.etsi.org/deliver/etsi_tr/102500_102599/102505/
01.02.01_60/tr_102505v010201p.pdf

“MDN Web Docs - Time to first byte,” [Accessed 2022-Apr-30].
[Online]. Available: https://developer.mozilla.org/en-US/docs/Glossary/
time_to_first_byte

“MDN Web Docs - First contentful paint,” [Accessed 2022-Apr-30].
[Online]. Available: https://developer.mozilla.org/en-US/docs/Glossary/
First_contentful_paint

“MDN Web Docs - Page load time,” [Accessed 2022-Apr-30].
[Online]. Available: https://developer.mozilla.org/en-US/docs/Glossary/
Page_load_time

D. Schinazi, “UDP Proxying Support for HTTP,” IETF, Internet-
Draft draft-ietf-masque-connect-udp-09, Oct. 2021, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-masque-
connect-udp/

N. Kuhn et al., “Evaluating BDP FRAME extension for QUIC,”
[Accessed 2022-Apr-30]. [Online]. Available: https://arxiv.org/abs/
2112.05450

S. Yang et al., “Performance Analysis of QUIC Protocol in Integrated
Satellites and Terrestrial Networks,” in IWCMC, 2018. [Online].
Available: http://doi.org/10.1109/IWCMC.2018.8450388

H. Zhang et al., “How Quick Is QUIC in Satellite Networks,” CSPS,
2019. [Online]. Available: https://doi.org/10.1007/978-981-10-6571-
247

L. Thomas et al., “Google quic performance over a public satcom
access,” Int. J. Satell. Commun. Netw., vol. 37, pp. 601-611, 2019.
[Online]. Available: https://doi.org/10.1002/SAT.1301

J. Deutschmann et al., “Satellite internet performance measurements,”
in 2019 International Conference on Networked Systems (NetSys),
2019, pp. 1-4. [Online]. Available: https://doi.org/10.1109/
NetSys.2019.8854494

N. Kuhn et al, “QUIC: Opportunities and threats in SATCOM,”
ASMS/SPSC, 2020. [Online]. Available: https://doi.org/10.1109/ASMS/
SPSC48805.2020.9268814

A. Custura et al., “Impact of Acknowledgements using IETF QUIC
on Satellite Performance,” ASMS/SPSC, 2020. [Online]. Available:
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268894

M. Sooriyabandara et al., “TCP Performance Implications of
Network Path Asymmetry,” RFC 3449. [Online]. Available: https:
/Iwww .rfc-editor.org/info/rfc3449

Y. Wang et al., “Performance Evaluation of QUIC with BBR
in Satellite Internet,” in WiSEE, 2018. [Online]. Available: https:
//doi.org/10.1109/WiSEE.2018.8637347

A. M. Kakhki et al., “Taking a Long Look at QUIC: An Approach for
Rigorous Evaluation of Rapidly Evolving Transport Protocols,” IMC,
2017. [Online]. Available: https://doi.org/10.1145/3131365.3131368

G. Carlucci et al., “HTTP over UDP: An Experimental Investigation
of QUIC,” in SAC, 2015. [Online]. Available: https://doi.org/10.1145/
2695664.2695706

Y. Yu et al, “When QUIC meets TCP: An experimental
study,” in IPCCC, 2017. [Online]. Available: https://doi.org/10.1109/
PCCC.2017.8280429

S. Cook et al., “QUIC: Better for what and for whom?” in ICC, 2017.
[Online]. Available: https://doi.org/10.1109/1CC.2017.7997281

M. Nottingham, “What’s Happening with QUIC,” [Accessed 2022-Apr-
30]. [Online]. Available: https://www.ietf.org/blog/whats-happening-
quic/

D. Saif et al, “An Early Benchmark of Quality of Experience
Between HTTP/2 and HTTP/3 using Lighthouse,” ICC, 2021. [Online].
Available: https://doi.org/10.1109/1CC42927.2021.9500258

A. Yu and T. A. Benson, “Dissecting Performance of Production
QUIC,” WWW, 2021. [Online]. Available: https://doi.org/10.1145/
3442381.3450103

“Exploring the "Internet from Space" with
[Online]. Available: https://doi.org/10.1145/

https://www.starlink.com
https://www.starlink.com
https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/
https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/
https://oneweb.net/connect_with_ease
https://www.telesat.com/
https://www.iridium.com
https://www.rfc-editor.org/info/rfc3135
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/
https://opensand.org/
https://www.etsi.org/technologies/dvb-s-s2
https://doi.org/10.1109/VTCSpring.2019.8746404
https://doi.org/10.14722/ndss.2021.24074
https://doi.org/10.1109/ASMS-SPSC.2010.5586897
https://doi.org/10.1007/978-3-642-36787-8_12
https://doi.org/10.1007/978-3-642-36787-8_12
https://doi.org/10.17487/RFC8312
https://doi.org/10.1007/978-3-030-72582-2_29
https://doi.org/10.1007/978-3-030-72582-2_29
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/
https://w3techs.com/technologies/history_overview/site_element/all/y
https://doi.org/10.1109/VETECS.2006.1683339
https://w3c.github.io/navigation-timing/#process
https://github.com/h2o/quicly
https://doi.org/10.1145/3404868.3406663
https://doi.org/10.1145/3404868.3406663
https://doi.org/10.1145/3419394.3423635
https://doi.org/10.1145/3419394.3423635
https://www.etsi.org/deliver/etsi_tr/102500_102599/102505/01.02.01_60/tr_102505v010201p.pdf
https://www.etsi.org/deliver/etsi_tr/102500_102599/102505/01.02.01_60/tr_102505v010201p.pdf
https://developer.mozilla.org/en-US/docs/Glossary/time_to_first_byte
https://developer.mozilla.org/en-US/docs/Glossary/time_to_first_byte
https://developer.mozilla.org/en-US/docs/Glossary/First_contentful_paint
https://developer.mozilla.org/en-US/docs/Glossary/First_contentful_paint
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/
https://arxiv.org/abs/2112.05450
https://arxiv.org/abs/2112.05450
http://doi.org/10.1109/IWCMC.2018.8450388
https://doi.org/10.1007/978-981-10-6571-2_47
https://doi.org/10.1007/978-981-10-6571-2_47
https://doi.org/10.1002/SAT.1301
https://doi.org/10.1109/NetSys.2019.8854494
https://doi.org/10.1109/NetSys.2019.8854494
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268814
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268814
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268894
https://www.rfc-editor.org/info/rfc3449
https://www.rfc-editor.org/info/rfc3449
https://doi.org/10.1109/WiSEE.2018.8637347
https://doi.org/10.1109/WiSEE.2018.8637347
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1109/PCCC.2017.8280429
https://doi.org/10.1109/PCCC.2017.8280429
https://doi.org/10.1109/ICC.2017.7997281
https://www.ietf.org/blog/whats-happening-quic/
https://www.ietf.org/blog/whats-happening-quic/
https://doi.org/10.1109/ICC42927.2021.9500258
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103

	I Introduction
	II SATCOM Emulation Testbed
	II-A Design
	II-B Scenarios
	II-C Measurement Types
	II-D QUIC PEP
	II-E QUIC Performance Measurement Tool
	II-F Validation

	III Evaluation
	III-A Goodput
	III-B Web Performance

	IV Limitations and Future Work
	V Related Work
	VI Conclusion
	References

